Effects of Emulsion-Based Resonant Infrared Matrix Assisted Pulsed Laser Evaporation (RIR-MAPLE) on the Molecular Weight of Polymers

نویسندگان

  • Ryan D. McCormick
  • Jeremy Lenhardt
  • Adrienne D. Stiff-Roberts
چکیده

The molecular weight of a polymer determines key optoelectronic device characteristics, such as internal morphology and charge transport. Therefore, it is important to ensure that polymer deposition techniques do not significantly alter the native polymer molecular weight. This work addresses polymers deposited by resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE). By using a novel emulsion-based target technique, the deposition of smooth, contiguous films with no evidence of chemical degradation have been enabled. However, structural degradation via a reduction in molecular weight remains an open question. The common polymer standard, PMMA, and the optoelectronic polymers, P3HT and MEH-PPV, have been characterized before and after emulsion-based RIR-MAPLE deposition via gel permeation chromatography to determine if RIR-MAPLE affects the deposited polymer molecular weight. Proton nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy measurements have also been conducted to verify the absence of chemical degradation. These measurements verify that there is no chemical degradation of the polymers, and that PMMA and P3HT show no structural degradation, but MEH-PPV exhibits a halving of the weight-averaged molecular weight after RIR-MAPLE deposition. Compared with competing laser deposition techniques, RIR-MAPLE is shown to have the least effect on the molecular weight of the resulting thin films. OPEN ACCESS Polymers 2012, 4 342

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RIR-MAPLE deposition of plasmonic silver nanoparticles

Nanoparticles are being explored in many different applications due to the unique properties offered by quantum effects. To broaden the scope of these applications, the deposition of nanoparticles onto substrates in a simple and controlled way is highly desired. In this study, we use resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) for the deposition of metallic, silver na...

متن کامل

Pulsed laser deposition vs. matrix assisted pulsed laser evaporation for growth of biodegradable polymer thin films

Thin films of poly (lactide-co-glycolide) (PLGA), a biodegradable polymer, were deposited on Si wafers by both conventional pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) using chloroform (CHCl3) as a matrix solvent. This research represents an initial study to investigate the deposition characteristics of each technique at comparable conditions to gain insig...

متن کامل

Molecular dynamics simulation study of the ejection of polymer molecules and generation of molecular balloons in matrix-assisted pulsed laser evaporation

Coarse-grained molecular dynamics simulations are performed to investigate the origins of the surface features observed in films deposited by the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. The simulations of MAPLE are performed for polymer concentrations up to 6 wt.% and a broad range of laser fluences. The polymer molecules are found to be ejected only in the ablation regime a...

متن کامل

New approach to laser direct writing active and passive mesoscopic circuit elements

Ž . We have combined some of the major positive advantages of laser-induced forward transfer LIFT and matrix-assisted Ž . pulsed laser evaporation MAPLE , to produce a novel excimer laser driven direct writing technique which has demonstrated the deposition in air and at room temperature and with sub-10 mm resolution of active and passive prototype circuit elements Ž on planar and nonplanar sub...

متن کامل

Wangyao Ge's Dissertation

Organic Thin Films Deposited by Emulsion-Based, Resonant Infrared, Matrix-Assisted Pulsed Laser Evaporation: Fundamentals and Applications by Wangyao Ge Department of Electrical and Computer Engineering Duke University Date:_______________________ Approved: ___________________________ Adrienne D. Stiff-Roberts, Supervisor ___________________________ April S. Brown ___________________________ Ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012